伺服电机更换轴承方法步骤
有些伺服电机用了几年后轴承在高速运行时会发出较大的噪声,为了不影响后盖内的光电编码器的正常工作,应提前作好更换轴承的工作,以防故障的进一步扩大,因为编码器是十分精密而昂贵的。拆换轴承的正确方法如下:
一:打开后盖,首先用记号笔画好轴与电机外壳,编码器活动底座与与轴,编码器活动底座可活动定位圈与电机外壳的定位线共三条
二:松开编码器底座与电机的两颗固定螺丝,旋开编码器与轴的连接螺丝,对于圆锥形连接轴,因连接处较紧,此时可用锤子敲击插入编码器与电机侧面的厚螺丝刀(因螺丝刀插入越深厚度越大)即可把整个编码器顶出,注意螺丝刀插入的位置,不要把编码器搞坏了,敲的时候不要用力过大,当心不要让编码器掉到地下,会摔坏的。对于用柱头螺丝固定的则首先要旋开柱头螺丝,接下来用手直接拿出来即可。
三:拆下编码器后你就可以按一般电机的方法拆卸电机的两个端盖,很简单,首先取出皮带轮,然后旋掉两面的各四个固紧螺丝,用锤子均匀往外敲击端盖即可把盖子拆下,后盖则可以用撞击前轴端面的办法顶出一条大缝来,
四:用拉马拉出损坏的轴承,并更换新的同型号同尺寸轴承。
五:把定子装回电机,按反顺序装好电机端盖,装回皮带轮
六:按记号笔所做的原来的定位线装回编码器。
雷煜自动化科技有限公司专业提供伺服电机故障维修:
磁铁爆钢、磁铁脱落、卡死转不动、编码器磨损、码盘/玻璃盘磨损破裂、电机发热发烫、电机进水、电机运转异常、高速运转响声、噪音大,刹车失灵、刹车片磨损、低速正常高速偏差、高速正常低速偏差、启动报警、启动跳闸、过载、过压、过流、不能启动、启动无力、运行抖动、失磁、跑位、走偏差、输出不平衡、编码器报警、编码器损坏、位置不准、一通电就报警、一通电就跳闸、驱动器伺服器报警代码、烧线圈绕组、航空插头损坏、原点位置不对,编码器调试/调零位、更换轴承、轴承槽磨损、转子断裂,轴断裂、齿轮槽磨损等。
当前在机器人的反应速度、精度上,国内外产品还是存在一定差距的。解决这一问题的关键在于机器人的核心零部件——伺服电机。
当前国内机器人发展迅猛,尤其是工业机器人领域。但在机器人的反应速度、精度上,国内外产品还是存在一定差距的,那么关键点是在哪呢?
关键在于机器人的核心零部件——伺服电机。机器人在运行过程中,是通过伺服电机的驱动实现多自由度的运动的。如果对机器人运行的动作速度、精度要求高的话,实际就是要求伺服电机的响应速度、控制精度要足够高。
而在机器人实际运行时,往往伺服电机是处于各种加减速、正反转状态,那就对伺服电机的短时过载能力、惯量适应范围、频率响应带宽、转速/扭矩响应时间提出了很高的要求。
其中一个非常重要的指标就是频率响应带宽,它决定了该伺服系统对指令的响应速度快慢,是机器人设计者的重要关注指标。
伺服电机频率响应带宽的定义:伺服系统能响应的最da正弦波频率就是该伺服系统的频率响应带宽。用专业一些的语言描述,就是幅频响应衰减到-3dB时的频率(-3dB带宽),或者相频响应滞后90度时的频率。
更具体一点,像机械部标准《交流伺服驱动器通用技术条件》(JBT10184-2000)中规定了伺服驱动器带宽的测试方法:驱动器输入正弦波转速指令,其幅值为额定转速指令值的0.01倍,频率由1Hz逐渐升高,记录电动机对应的转速曲线,随着指令正弦频率的提高,电动机转速的波形曲线对指令正弦波曲线的相位滞后逐渐增大,而幅值逐渐减小。相位滞后增大至90度时的频率作为伺服系统90度相移的频带宽度;幅值减小至低频时0.707倍的频率作为伺服系统-3dB频带宽度。
可以说,频率响应带宽越快,伺服系统就可以对变化更快的指令实现及时响应,即使工业机器人的动作再复杂,也能及时响应,驱动机器人的每一个关节位置控制到位。
而影响频率响应带宽的因素有很多,像伺服驱动器或者控制系统参数、传动链的刚度或精度、传动间隙、负载惯量等都会对伺服系统的响应带宽产生影响。过去业内很多研究者由于缺乏测试装备,故只能通过加实际负载的测试来判断伺服系统及机器人的响应性能,属于定性分析,无法定量分析。因此国内的伺服系统目前在响应速度一块仍需加强,像一般的伺服电机,响应带宽最gao只能做到几百Hz左右,比较优质的能做到1kHz;而国外的产品,如日系的安川、三菱、松下等,却在多年以前已突破2kHz的关卡。
修理NACHI机器人电源模块
第yi、要及时清理机器人码垛机。每天完成工作之后都应该对机器人码垛机进行认真的清洁,最hao是用比较干的抹布去清理,如果是抹布很难清理的地方,不妨使用毛刷。
第二、看看润滑油是不是仍然在起作用。一般来说机器人码垛机工作了3个月的时间之后,你就需要检查真空泵的润滑油是不是变脏了或者是变少了。如果脏了就要及时更换,如果少了就要尽快添加。
第三、机器人码垛机的底面要合理的运用。机器人码垛机的四个底面都是能够使用的,例如如果你的地面不平整的话,就可以调整这四个硅胶垫,从而保证机器人码垛机的平整。
第四、有的机器人码垛机上面会有高温布卷轴,卷轴会吸收热量,如果卷轴被烧毁的话要立刻进行更换。
每个机器人都有一个分辨率达640 x 480象素带一个6D集成鼠标的控制面板(KCP),操纵鼠标,便可控制机械手臂的运动,机器人移动的位置可被即时储存(TouchUp);功能、模块以及所有相应的数据列表也可通过它得以创建并编辑。 若要手动控制,必须先开启控制面板(KCP) 背部的开关(如今该开关只用于紧刹)。连接到控制面板和系统的是一个VGA接口和CAN总线。 设在控制柜中的一台工业电脑,通过MFC卡和机器人系统通信,机械手臂和和控制面板之间的控制信号则经由DSE-传播, DSE卡在控制柜内, RD~ 卡则在机器人底座内。 旧版的KRC1控制面板使用的是Windows 95 运行操作系统的软件。外围设备包一个CD-ROM和磁盘驱动器;以太网, Profibus,Interbus, Devicenet 和 ASI 插口也都是可用的。 新版的KRC4控制面板采用Windows XP 操作系统,包含一个CD-ROM驱动和一个USB插口,一个以太网接口以及一个提供给Profibus, Interbus, DeviceNet 或者Profinet的可选接口。大多数的机器人都是橙黄色(RAL 2003)或者黑色,前者鲜明的代表了公司主色调。
OTC机器人指由操作机(机械本体)、控制器、伺服驱动系统和传感装置构成的一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的光机电一体化生产设备,特别适合于多品种、变批量的弹性制造系统。一个工业机器人可以仅包括一个感觉与动作之间的连结,而且这个连结不是由人手动操控的。机器人的动作也许是电动机或是驱动器(也称效应器)移动一只手臂,张开或关闭一个夹子的动作。此种直接而详尽的控制跟回馈也许是由在外部或是嵌入式的电子计算机或是微控制器上运行的程式提供。根据这个定义,所有的自动装置都算机器人。